读文小说网

手机浏览器扫描二维码访问

第106章 数学不是那麽简单 但也不难(第1页)

第104章数学不是那麽简单..但也不难!

张树文犹豫了片刻,然后选择站了起来,走到乔喻的身边,随手将最后的板书擦掉,然后开始了现场讲解。

「Riemann—Roch定理是代数几何中的一个基本定理,用于描述代数曲线上某些函数或形式的维度。

具体来说,Riemann—Roch定理适用于代数曲线X上的任意除子D,定理陈述代数曲线上与除子D相关联的函数空间L(D)的维数。

它的具体陈述就是(D)=deg(D)1—g(K—D)。

它有两个部分互为补充,描述了除子D与剩馀部分K—D的平衡关系。

但有特殊情况,当D的度数足够大时,(K—D)为零,所以这种情况下(D)=deg(D)1—g,你明白这代表什麽吗?」

「D的度数足够大,维数与度数就是线性关系。

」乔喻立刻答道。

「那麽当D为零的时候..」

「(0)=1—g(....,张教授,我明白您的意思了....所以这部分的证明其实可以不用那麽繁琐,因为亏格g(X)可以直接通过Riemann—Roch定理得出,咦,那这部分的证明就不那麽麻烦了...让我想想..」

说完,乔喻拿起了粉笔,开始在黑板另一边书写。

「也就是说构建函数的时候....,dimQH1(Cp是量子化后的同调群维数,嗯,取决于曲线的亏格g和量子算..这部分可以通过计算典范因子,得到H1C)的维..所以分解后的维数关系直接就是dimQH1(Cp)=g·f(Q),张教授,您看这部分的推导这样对不对?」

张树文深吸了口气,让自己表情没有一丝动容,然后点了点头。

「太好了,那下一步就好证明...导出同调群的维数后,那麽量子化同调群的维数越大,就代表曲线几何复杂性越高,曲线上的有理点个数就会受限,再加上Jacobian又能进一步影响有理点个数..

亏格是最核心的几何不变量之一,不能简化,那麽#C(K)sf(g,Jac(Cp)?呼,不是,这样看的话,我感觉这个方法好像真能把常数C的公式给推导出来啊?」乔喻下意识的感慨道。

真的,台下的陈卓阳听到乔喻这句话,都懵了。

虽然他同样被乔喻的悟性震撼着,但听到这句话大家真不生气麽?压根没百分百信心证明出来的东西,你还敢接受45分钟的研讨会?只是看到会议室没人在乎的样子,陈卓阳自然也不可能说什麽。

而台上,张教授则是冷哼了一声,说道:「还早呢,我相信你能证明出来,甚至还能得到一个你想要的公式!

但是那些真的有用吗?!

你最起码得简化到#C(K)sf(g)这一步才有意义!

引入彼得·舒尔茨的理论是可以的,数学的证明过程只要是框架内的逻辑,多繁复抽象都可以,但你要把所有的复杂性限制在证明的中间步骤!

最终的结果必须要尽量简化!

否则的话,你就算证明出来了常数C,并推导出了结果,把那麽多设定的常数带入进去,你自己想想最终的公式会有多复杂?其他人怎麽去利用?

真正的数学追求的是思维复杂化,结果简洁化,只有简洁的结果才是真正有用且优雅的数学工具!

过多的常数或参数只会增加理解和计算的难度,即便研究出来也是垃圾!

数学没有你想的那麽简单!

张树文语气极为严厉,但田言真坐在那里看上去心情却很愉悦。

罗伯特·格林终于忍不住凑过来问道:「田教授,张教授在跟那个孩子说什麽?」

刚刚乔喻在介绍他的想法时用的是英文,但等到张树文上去指点乔喻的时候,已经开始用中文了。

「他教育乔喻不要得意忘形,在告诫孩子他现在提出的只是想法,距离出成果还远,以及数学结论必须简洁化的道理。

」田言真笑着解释道。

「哦!

上帝呐,张的要求那麽严格吗?他难道不知道这个孩子才十五岁?十五岁啊,他竟然真能看懂舒尔茨的理论,还能畅想出如此有创意的想法,张竟然还觉得不够?他是疯了吗?我甚至觉得这的确是一个未来非常值得期待的研究方向。

罗伯特·格林困惑的说道,显然从这位纽约大学教授的角度看来,张树文太过严厉,对乔喻的要求更是太过苛刻了。

「对,这也是我一定要举办这次研讨会的原因,我也觉得这是一种很值得期待的可能。

不过目前这孩子想独立完成这个命题还稍微难了点。

所以我其实很感谢张教授,起码他告诉了乔喻在数学层面做减法有时比证明过程本身要难许多的道理。

热门小说推荐
隐婚后大佬他反悔了

隐婚后大佬他反悔了

隐婚后大佬他反悔了简介emspemsp关于隐婚后大佬他反悔了代替男友入狱,出狱后却得知男友不管母亲死活,母亲早已病逝,又遭遇男友跟别人结婚。苏浅一转身嫁给了前男友他哥,从此成了前男友他大嫂!只是,说好的地下情,某男却总是高调撒糖虐狗拉仇恨?传闻某男狠戾,冷酷,有钱!某男眉眼一挑谣言!什么狠戾?什么冷酷?别吓到我老婆!而且我老婆比我还有钱!传闻某男不近女色,是个gay?某女嫌弃的看了某男一眼。某男很自觉的抱了个榴莲走过去老婆,你信吗?...

战国第一纨绔

战国第一纨绔

战国第一纨绔简介emspemsp关于战国第一纨绔公元前361年,战国时代,大争之世。这一年,一个满心壮志的年轻人孙膑刚刚告辞了师傅下山,准备去魏国安邑投奔自己的师兄庞涓。这一年,庞涓还是魏国的大将军,位高权重。霸主魏国威震天下...

半是秋声半酒痕

半是秋声半酒痕

风之萧萧,雨之寥寥,思之不见,佳人不还。进而繁华可见市井,退而幽静可品清茗,生活就是,尝尽了柴米油盐酱醋茶的平淡后,还可以肆无忌惮的微笑。春梦随云散,飞花逐水流。我是平淡中的小人物,筚路蓝缕,踽踽独行,看官们,您在茶余饭后清闲之时,不妨点开这本书,听我给您讲段故事。...

穿成恶毒后娘后实时洗白

穿成恶毒后娘后实时洗白

来自22世纪的顶级特工一朝穿越竟成了三个崽子的后娘。这三个崽子在未来都是超级大反派!还把她给抓了回去,抽筋剥皮!为了活下去,李瑾瑜决定要好好教导三个孩子,绝不能让自己下场凄惨!好在她有空间,一手发家致富,一手斗极品,只是捡来的那个男人有些古怪,本想富可敌国之后偷偷做咸鱼,却不曾想,又被男人给拉入更大漩涡之中...

尸毒

尸毒

尸毒简介emspemsp关于尸毒舍友彻夜不归之后,宿舍出现了死人蛆。第二天竟然还有个漂亮女人进来,结果被我无意间撞破她和舍友啪啪啪。可舍友早已是个死人。首发po18kcomwoo16com...

出狱当天,我闪婚了个亿万富豪

出狱当天,我闪婚了个亿万富豪

甜宠闪婚双洁男主扮猪吃老虎南遥刚从监狱出来,就被未婚夫和渣姐设计,睡错了人!一气之下她就和陌生人闪婚了。本以为便宜丈夫是个牛郎,有颜没钱没背景。没想到他却住寸土寸金的豪华别墅,还偷偷开着价值千万的限量迈巴赫,就连他身上不起眼的衣服都是全球首席设计师亲手设计定制的。还以第一首富身份参加了全球国际联合会议!你到底是谁?你的甜甜蜜蜜小心肝丈夫。南遥一脸认真,我再问一遍,你到底是谁?我要听实话。你未来孩子的爹。...

每日热搜小说推荐